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ABSTRACT :

Due to the unavailability and, later, prohibitive cost of the
computational power required, many phenomena in nonlinear dynamic

s_stems have in the past been addressed in terms of linear systems.
Linear systems respond to periodic inputs with periodic outputs,
and may be characterised in the time domain or in the frequency
domain as convenient. Reduction to the frequency domain is frequently
desireable to reduce the amount of computation required for solution.

Nonlinear systems are only soluble in the time domain, and may
exhibit a time history which is extremely sensitive to initial
conditions. Such systems are termed chaotic.

Dynamic buckling, aeroelasticity, fatigue analysis, control
systems and electromechanical actuators are among the areas
where chaotic vibrations have been observed. Direct transient

analysis over a long time period presents a ready means of simulating
the behaviour of self-excited or externally excited nonlinear
systems for a range of experimental parameters, either to
characterize chaotic behaviour for development of load spectra, or

to define its envelope and preclude its occurence.

INTRODUCTION:

Chaotic systems have been defined as those whose time history
is highly dependent on initial conditions. Without coining the term

"chaos", Henri Poincare (i) informally stated precisely this
definition early in the century, and there can be little doubt that
earlier than this the concept was known to dynamicists, and
remained undeveloped because, in the absence of digital computers
and modern instrumentation, it was not a profitable field of inquiry.

The availability of computational power at an unprecedentedly low
cost has extended the range of chaotic phenomena in mechanical
systems which may profitably be investigated. Such investigation
requires solution of the equations of motion of the system in the

time domain over a long time period and the subsequent processing
of the large body of data acquired to produce phase plots, power
spectral densities, peak loads etc. In effect the computer is

used to simulate in the time domain a physical test in the time
domain ( such as a shaker table test for vibration, a wind tunnel

test for aeroelasticity, or the experimental observation of the
behaviour of an electromechanical system under periodic actuation).

Results from the simulation may be processed in the same manner as
data from physical experimentation, to produce power spectral
densities, Poincare plots and other means of providing insight into

the system's behaviour. Extension of analysis beyond the linear
domain has the potential of allowing less conservative design
assumptions, and of providing an alternative, less statistically

oriented approach to load spectrum development and fatigue analysis.
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CHAOTIC VIBRATIONS:

Consider a linear dynamic system subject to a periodic input.

The response of the system to this input at all degrees of freedom

will be a periodic output of amplitude and phase shift dependent

upon the mass, stiffness and damping of the system.

The system can be defined equivalently either by equations for

displacement as a function of time, or by equations for amplitude

and phase of displacement for different input frequencies and
amplltudes. The direct response and random analysis disciplines
within NASTRAN use the latter approach to generate an output Power

Spectral Density (PSD) for a given input PSD to a linear system.

Significant modes are determined by modal analysis, after which
the amplitude and phase of the system's response to excitation at
and around these frequencies using the direct response method.

Finally, an input PSD is applied to the data from the direct

response analysis to produce an output PSD. of displacement,
load, stress or whatever variable is required.

The results obtained are statistical in nature, providing a

non-zero value of spectral density for an_ amplitude. The analyst
must determine an amplitude at which nonllnear factors will truncate
the PSD curve. This level is somewhat variable, and is generally
taken to be between 3 and i0 times the RMS value. Selection of

an appropriate truncation point can present problems to the analyst.

Introduction of significan£iy nonlinear spring constants or

nonuniform dam_ing requires that the system must be analysed, in
NASTRAN, by dlrect time integration. Depending upon the degree of
nonlinearity and the degree of damping the response to a periodic

input may be _eriodic, quasiperiodic, limit cycle or chaotic.
Despite the dlstinction in names, the first three categories are
all periodic in the sense that they may be described by a Fourier
series of finite length.

A quasiperiodic system differs from a periodic one in that,
although it is expressible as a series of finite length, the
frequency components are cannot be expressed as a rational

number. It appears, therefore, that quasiperiodic oscillations can
not be modelled numerically. Numerical approximation will reduce a
quasiperiodic motion to a low frequency periodic one.

Limit cycle vibration is self-excited vibration whose amplitude
is limited by non-linear effects. Classical flutter is an example of
limit cycle vibration.

Classical flutter theory is limited to the location of regions

of negative damping in a linear aeroelastic model, with the purpose
of ensuring that these regions are outside the flight envelope.
A time-domain solution of nonlinear aeroelatic equations offers the

prospect of defining the amplitude of an oscillation which may in
reality be either limit cycle or chaotic.

A chaotic system, subject to self-excitation or to a periodic
input, will produce a non-periodic output. The system is entirely
deterministic and, given the displacement, velocity and acceleration

of all degrees of freedom at time tl, the same variables may be
calculated at any future time t2. It is interesting to note that
the process can not necessarily be reversed to find the state of

the system at any prior time. It follows from the above that,
if the system is sampled at a rate equal to the period of the input
excitation, with any phase shift, the same system state will never recur,
since if it did the system would thereafter behave periodically.

A self-excited system, not being subject to a periodic external load,
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will never exhibit the same state at any sampling frequency.

A useful definition of chaotic vibration might be a response to a
periodic input which can not be characterised by a Fourier series
of finite length.

Time-domain analysis of potentially chaotic vibrations subject to
periodic excitation provides information as to range of frequencies
and amplitudes of excitation for which a non-periodic response may
be expected, by examination of power spectral density and Poincare

plots, and also information allowing an informed decision as to
where to truncate the output PSD from a random response analysis,
if the response should prove to be approximately linear for the
levels of excitation of interest. For systems where the excitation

is dominated by a relatively small number of frequencies, the
system can be solved directly over a suitable time period by using
a combination of dynamic load cards to provide excitation with
several frequency components. Input excitations associated with
rotating machinery are a case in point.

In self-excited oscillations, such as flutter, a non-linear

analysis in the time domain can, by accounting for geometic and
material nonlinearities, provide the limit amplitude of a periodic
oscillation, or an envelope for chaotic oscillation. Other
potentially chaotic self-excited systems include control systems
with hysteresis and "galloping" of cables.

In all these cases it is potentially of interest to determine
whether the oscillation will result in immediate catastrophic
failure, will produce stresses affecting the life of the structure
or will be limited at a benign level by nonliearities.

ATTRACTORS, POINCARE MAPS AND POWER SPECTRAL DENSITY

Given a time history of a time-domain NASTRAN transient analysis,

of a self- or periodically excited system, the generation of an
output PSD is an obvious and simple step. This involves operating on
the output data in precisely the same manner as would be done with
experimental data. At least as important for potentially chaotic
systems are phase plots and Poincare plots, where the variable of
interest (usually position) is the ordinate and its first derivative
is the abscissa.

For a periodic oscillation, either externally or self-excited, such a
plot will form a closed path. The simplest case, an undamped single
DOF oscillator, appears in a phase plot as an ellipse (or a circle if
appropriately scaled) centered on the equilibrium position of the oscillat
of a damping term will produce a plot in phase space which spirals in to t
equilibrium position. The equilibrium point is an attractor for the
single DOF damped spring, since as the initial disturbance of the system
dies away, the system tends to this state. For a periodic oscillation
not decaying to equilibrium, such as the undamped single DOF oscillator,
the attractor is a close curve. Sampling at a rate equal to the natural

frequency will reduce the plot to a single point. Such plots in phase spac
are termed Poincare plots. More complex periodic oscillations, having

several frequency components due to a forcing function with several frequ(
will appear in the phase plot as interleaved curves. By selecting a samplJ
the appropriate sampling rate the output data will be a finite number of
loci defining a closed curve, with data points repeating after a finite
number of cycles. In a single DOF system, sampled at the forcing function
frequency, the coincidence of displacement and velocity implies a coincid_
of acceleration, and consequently the curve in the phase plot can not int_
itself.

For a quasiperioaic oscillation the attractor will form a closed curve

sampled at in phase space. Although all points will lie on the curve, none
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Results of the analysis may be interpreted in the same way as those

of a physical test.

(i): A time history of displacement or velocity may exhibit a

clear periodicity or may not. In the latter case the caus_ could be eithez

chaotic motion or the combination of several periodic components.

(2): Power Spectral Density Analysis of the system response to a single

frequency forcing function. A system verging upon chaos will exhibit
several harmonics of the driving frequency, with the response becoming

broad-band as the system enters the chaotic regime. Judgement as to the

presence or absence of chaos must be made with regard to the system

analysed. In the case analysed below a single DOF system produces
several harmonics for certain levels of periodic excitation. The

conclusions drawn from it would not necessarily be justified from

observations of a single node in a complex structure.

(3,4,5): Phase plane observation, Poincare and 3-D plots: These are
discussed in some detail above.

DYNAMIC MODEL OF AN ELECTROMECHANICAL ACTUATOR SYSTEM:

The electromechanical actuator is a known, simple example of

a chaotic oscillator, described by Hendricks in 1983 (2).

Fig.(1) shows an electromechanical actuator system wherein

the armature is subject to an externally applied dynamic

load by application of an electrical current to a coil. Such systems

are used in impact print mechanisms, high speed relays and elsewhere.
The system Is modelled as an armature GRID with a single DOF

moving between two GRIDS each occupying a deep potential well

defined by NOLINI cards and representing the stops limiting the
armature's travel. EPOINT NOLINI and TF cards are used to model the

impacting of the armature on the stops.

The armature GRID is also attached to ground by a scalar spring

whose stiffness was varied during the investigation. The armature

thus tends to a rest position with the scalar spring in an unloaded

state as shown in Fig.(2).

Also in Fig. (i) is a mechanical fastener transfering load between

two components having oversized holes. This system, representative
of structural details in aircraft construction or modification,

is from a mathematical point of view identical with the actuator

system. Note that by applying excitation at one of the constraining

grids the same model can represent, without further modification,

a system with nonlinear stiffness mounted on a a shaker table.

The actuator modelled was given travel between stops of

0.008 inch, peak applied force of 0.8 # and cycle time of IKHz.

These times were based upon an actual device for which data was

available and were varied in the course of the study to induce

chaotic behaviour. It was determined that a time step of 0.5 uS was

required to adequately model the behaviour of the armature and stops

during impact. Inspection of the motion of the stops shows that they

are restored to equilibrium position between impacts and hence act

merely as nonlinear restoring forces on the armature. The armature

therefore acted, in effect, as a single DOF nonlinear system. A means

of applying a load as a function of space and time was also devised and

is described in appendix (i).

RESULTS:

(I): VARIATION OF DYNAMIC LOAD

Curves of displacement vs. time are plotted in Figs. (3-7) for

excitation at ikHz with peak forces from 0.i # to 1.2 #, with
a travel of 0.008 inch between stops and a weak spring defining

the rest position of the armature. It is seen that for the extreme

limits of applied load the results do not appear to be periodic.
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will be coincident since the ratio of the component frequencies is not a
rational number. In a time-domain simulation the distinction from a perioc

oscillation is of no importance.

A chaotic oscillation, sampled in this manner, will never repeat itsell

and may exhibit an interleaved phase plot. This state, not conforming to

any of the three cases in classical dynamics, is termed a strange attractc
While the static, periodic and quasiperiodic attractors define closed patD

stran@e attractors, while being confined to a finite area of phase space,
exhiblt fine structure within their domain. Alternatively, in lightly

damped systems, the plot may appear to be randomly distributed. Such
systems are sometimes described as stochastic in nature.

A plot of displacement, velocity and acceleration is of interest.
In a self-excited single DOF system, the coincidence of position and

velocity imply a coincidence of acceleration, since the acceleration
is defined in terms of the other two variables. In chaotic systems, the

converse is true and no two points may be coincident in such a plot. In

a system with several degrees of freedom the presence or absence of
perlodicity must be determined by examining, and seeking a coincidence in,
the displacement and velocity of all degrees of freedom simultaneously.
Graphically, this requires plotting in a space of 2N dimensions where
N is the number of degrees of freedom. For a system subject to an external
forcing function, the sampling must be done at the frequency of the forci[
function. Given that the analysis must be based upon a simulation of finit

span, it will not be possible to prove explicitly that a system is chaotic
and only in some clear-cut cases will it be posslble to prove the converse

In practice, as in actual physical testing, several tests may be applic
which with a high degree of confidence discrlminate between chaotic and
periodic behaviour. The envelope defined for motion of an apparently
chaotic system is no less useful if the system in fact is periodic with
a very long wavelength.

APPLICATION OF NASTRAN TRANSIENT ANALYSIS

The paradigm of chaos, the Lorenz attractor, was initially attributed
by some to the process of numerical simulation rather than to an underlyir
physical reality. This proposition will be sympathetically viewed by any
analyst who has used NASTRAN to model intermittent contact problems.

In impact studies and similar applications the greatest care must be t_
to ensure that the time step is sufficiently small to prevent a node from

penetrating a significant distance into a region of high stiffness before
the stiffness matrix is updated to reflect this. The effect of such an
excessive time step can be that the node is reflected from the collision
with a velocity many times that of impact. At the same time, the total
number of time steps must, as far as possible, be minimized. For problems
such as a single impact, where the regions requiring small timesteps
can be estimated, or derived from a preliminary analysis, the problem may
be addressed by using several timesteps, with the small ones limited to
the appropriate times. In analysis of a chaotic system, however, a large
number of cycles must be analysed, and the behaviour is by definition

nonperiodic and unpredictable. A single value of time step must be employc
and experimentation is required to determine the maximum timestep
commensurate with conservation of energy in the system.

The application of periodic dynamic loads required the input of

a large amount of data, defining each of many cycles explicitly.
This _s conveniently done using an external preprocessor to generate the
appropriate cards. The numerical and graphical output from direct transiE
consists of the values of variables as a function of time, as would be the

case for a physical test. The desired output of phase plots (velocity vs.

position) and power spectral density may be readily obtained, however, frc
a punch file of the results, either by use of a batch program or by
importation into a spreadsheet or database program.
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The velocity plots in Fi@s. (8-12) provide a clearer picture of
the armature's behaviour, wlth almost constant peak velocity for

dynamic loads from 0.24 to 0.8 # and considerable variation outside
that envelope. Figs. (13-17) are phase plots of velocity

vs. displacement for the same data. Figs. (18-19) show the
superimposed plots in the vicinity of the front and back stops.
The larger scale reveals considerable fine structure in the curves
for peak dynamic loads from 0.24 # to 0.8 #.

Fig.(20) shows the displacement PSD for peak dynamic loads
from 0.24 # to 1.2 #. The largest peak is for the 0.4# peak force,

but, if the results are normalised for the amplitude of the input
force, the 0.24# case will have almost the same magnitude, but with
much less marked secondary peaks.

Fig.(21) shows the 0.4# and 0.24# Poincare plots for a sampling
rate twice the excitation rate, phase shifted to encompass maximum
deflection. The loci near the equilibrium attractor are virtually
coincident while the loci mear maximum displacement show considerable

variation in velocity, but not position. Fig.(22) shows loci for peak
forces of 1.2# and 0.24# for a sampling rate equal to the excitation

rate. The 0.24# case suggests a long-period periodicity while the 1.2 #

case suggests chaotic vibration. Figs. (23-24) are 3-D plots for
peak loads of 0.8 # and 1.2 # respectively.

(2): VARIATION OF NONLINEARITY

By increase of the linear spring constant constraining the
armature from 1.0# to i00.0 # it becomes si@nificant with respect to
the nonlinear forces. Fig. (25) shows the dlsplacement vs. time

for a peak dynamic load Of 0.8 # for sprin@ constants of 1.0 and
I00.0 respectively. It is apparent from thls and the Poincare plot

in Fig. (26) that the effect of reducing the range of stiffness
is to reduce the tendency to chaos.

(3): VARIATION ON INPUT FREQUENCY

The effect of increasing input frequency is to increase the tendency

to chaos. Fig. (27) shows phase plots for 0.8# peak input force at
1.0, 1.5 and 2.0 Khz. The chaotic behavior at 2.0 KHz Is in accordance
with test data indicating a maximum stable drive frequency around
1.7 kHz.

CONCLUSIONS:

The data described above for a magnetomechanical actuator are in
agreement with several years of experience in the design, analysis
and characterization of such devices. With small modiflcations, a

similar model could be applied to mechanical fasteners in aircraft
structures, vibration isolation and other areas where load
transmission between pieces of structure is via a nonlinear path.

Application of appropriate position-dependent loads should allow
nonlinear modelling of flutter and other self-excited phenomena.

Considerable care must be taken to ensure that effects observed are

due to physical characteristics of the system and not artifacts of the
simulation. Spurious self-excitation of the system due to an inadequate

time step is an obvious possibility.

Implementation of automatic time-step variation, such as is available
in some other FEA codes, is probably not desireable for an application

where there is a significant risk of mistaking numerical artifacts for
physical behaviour. A means of specifying a large number of periodic load_
on a single card would, however, be desireable.

z
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Figs (3-7): Displacement vs. time for armature
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Figs. (13-19) : velocity vs. _Isplacem_nt
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Figs (21-22), Poincare plots sampled at 2kHz
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Fig. (23): 3-D plot for 0.8 # peak load
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Fig. (24): 3-D plot for 1.2 # peak load
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Fig. (25) : displacement plots
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Fig.
(26)" Phase plots for different linear spring rates

!

I O

&
O

O
O

O
O

VELSCITY {IPS)
I I

_ _ _ _ -0 0
0 0 • 0 0 •

I

i!I•

-0

_CD

N_

QF--
ZCD

39



Fig. (27): phase plot at three different forcing freq.s
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